MECHANICAL ANCHORS

TAPPERTM Concrete Screw Anchol

GENERAL INFORMATION

TAPPER[™]

Concrete Screw Anchor

Type 410 & 304 Stainless Steel

PRODUCT DESCRIPTION

The Tapper fastening system is a family of screw anchors for light to medium duty applications in concrete, masonry block and brick base materials. The Tapper is fast and easy to install and provides a neat, finished appearance. The Tapper screw anchor is engineered with matched tolerance drill bits and installation tools designed to meet the needs of the user and also provide optimum performance.

For every project, it is important to consider several things before making a selection: The proper head style, the color or finish that is desired, and the required level of corrosion resistance. The Tapper screw anchor is available in 410 and 304 stainless steels. Head styles include a hex head and Phillips flat head.

GENERAL APPLICATIONS AND USES

410 Stainless Steel Tappers

- Screen Enclosures
- Storm Shutters
- Light Duty Fixture
- Light Duty Industrial Applications

FEATURES AND BENEFITS

- + Tested in accordance with ASTM E488 and AC106 criteria
- + Available in several head styles
- + High-low thread design
- + Does not exert expansion forces
- + No hole spotting required
- + Available in 410 and 304 stainless steel

APPROVALS AND LISTINGS

• Miami Dade County Notice of Acceptance (NOA) 14-0915.04

GUIDE SPECIFICATIONS

CSI Divisions: 03 16 00 - Concrete Anchors, 04 05 19.16 - Masonry Anchors and 05 05 19 - Post-Installed Concrete Anchors. Concrete Screw Anchors shall be Tapper as supplied by Powers Fasteners, Inc., Brewster, NY.

304 Stainless Steel Tappers

1/4" diameter anchor data for CIP is

*CIP See Pages 142,143,145,146

bubbled for convenience

- Exterior Applications
- Food and Beverage Facilities
- Marine Applications
- Waste and Water Treatment Plants

SECTION CONTENTS

General Information	141
Installation Specifications	142
Material Specifications	142
Performance Data	143
Design Criteria	145
Ordering Information	146

410 STAINLESS STEEL TAPPER

304 STAINLESS STEEL TAPPER

ANCHOR MATERIALS

- Type 410 Stainless Steel
- Type 304 Stainless Steel

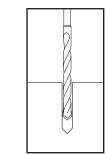
ANCHOR SIZE RANGE (TYP.)

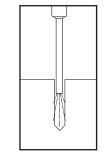
- 3/16" diameter x 1-1/4" to 2-3/4" length
- 1/4" diameter x 1-1/4" to 6" length

SUITABLE BASE MATERIALS

- Normal-Weight Concrete
- Lightweight Concrete
- Hollow Concrete Masonry (CMU)
- Solid Brick Masonry

MECHANICAL ANCHORS

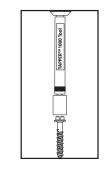

TAPPERTM Concrete Screw Anchor



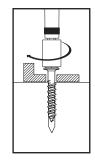
INSTALLATION SPECIFICATIONS

Dimension	Anchor Di	iameter, d
Dimension	1/4" HEX	1/4" PFH
Гаррег Drill Bit Size, dыt (in.)	3/16	3/16
Fixture Clearance Hole, dh (in.)	5/16	5/16
Thread Size (UNC)	1/4-14	1/4-14
Head Height (in.)	9/64	3/16
lead Width (in.)	5/16	1/2 O.D.
Washer O.D., d _w (in.)	13/32	N/A
Washer Thickness, (in.)	1/32	N/A
Hex Driver (in.) / Phi ll ips Driver	3/8	#3

Installation Procedure



Using the proper diameter bit, drill a hole into the base material to a depth of at least 1/4" deeper than the embedment required. The Tapper drill bit must be used.


Blow the hole clean of dust and other material.

410 Stainless Steel Tapper

Dimension	Anchor Di	ameter, d
Dimension	1/4" HEX	1/4" PFH
Tapper Drill Bit Size, d _{bit} (in.)	3/16	3/16
Fixture Clearance Hole, dh (in.)	5/16	5/16
Thread Size (UNC)	1/4-14	1/4-14
Head Height (in.)	9/64	3/16
Head Width (in.)	5/16	1/2 O.D.
Washer O.D., d _w (in.)	13/32	N/A
Washer Thickness, (in.)	1/32	N/A
Hex Driver (in.) / Phi ll ips Driver	3/8	#3

Select the Tapper installation tool and drive socket to be used. Insert the head of the Tapper into the hex head socket or Phillips head driver. Set the drill motor to the "rotation only" mode.

Place the point of the Tapper through the fixture into the pre-drilled hole and drive the anchor in one steady continuous motion until it is fully seated at the proper embedment. The driver will automatically disengage from the head of the Tapper.

MATERIAL SPECIFICATIONS

Anchor Component	304 Stainless Steel	410 Stainless Steel
Anchor Body	Type 304 Stainless Steel	Type 410 Stainless Steel
Coating/Plating/Finish	Passivated	Class 4 Sealcoat (1500 hour rating for ASTM B 117 salt test, 20 hours rating for DIN 50018.2.05 kesternick-test undamanged coating reference).
Note: Type 410 Stainless Steel fasteners	in contact with aluminum and aluminum alloys is not recommended in acco	ordance with AISLSS 502/SSINA guidelines.

PERFORMANCE DATA

	Nominal		Minimum			Minim	um Concrete C	ompressive St	rength		
	Anchor Diameter	Anchor	Embedment Depth	f'c = 2,000 p	si (13.8 MPa)	f'c = 3,000 p	si (20.7 MPa)	f'c = 4,000 p	si (27.6 MPa)	f'c = 6,000 ps	si (41.4 MPa)
d in. (mm)	Material	h _v in. (mm)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs.	Shear Ibs. (kN)	Tension Ibs.	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	
			1 (25.4)	500 (2.3)	1,180 (5.3)	600 (2.7)	1,180 (5.3)	700 (3.2)	1,180 (5.3)	700 (3.2)	1,180 (5.3)
	1/4	Type 304 Stain l ess	1-1/4 (31.8)	855 (3.8)	1,265 (5.7)	855 (3.8)	1,265 (5.6)	1,015 (4.6)	1,340 (6.0)	1,320 (5.9)	1,340 (6.0)
	(6.4)	Steel	1-1/2 (38.1)	1,140 (5.1)	1,340 (6.0)	1,220 (5.6)	1,340 (6.0)	1,340 (6.0)	1,320 (5.9)	1,580 (7.1)	1,340 (6.0)
8			1-3/4 (44.5)	1,140 (5.1)	1,640 (7.4)	1,520 (6.8)	1,640 (7.4)	1,580 (7.1)	1,640 (7.4)	1,580 (7.1)	1,640 (7.4)
1	\mathcal{T}	\mathcal{T}	7/8			Z20	805	250	1,000		
	3/16		(22.2)			(1.0)	(3.8)	(1.1)	(4.4)		
	(4.7)	Type 410 Stainless Steel	1-1/4 (31.8)	-	-	465 (2.0)	1,115 (5.0)	540 (2.9)	1,285 (5.7)	-	-
	1/4		1-1/2 (38.1)	-	-	2,160 (9.6)	2,420 (10.8)	2,160 (9.6)	2,420 (10.8)	-	-
	(6.4)		1-3/4 (44.5)	-	-	2,430 (10.8)	2,420 (10.8)	2,430 (10.8)	2,420 (10.8)	-	-

Ultimate Load Capacities for Stainless Steel Tapper Screw Anchor in Normal-Weight Concrete^{1,2}

2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

Allowable Load Capacities for Stainless Steel Tapper Screw Anchor in Normal-Weight Concrete^{1,2}

						· · · · · · · · ·	rength			
Anchor	Embedment Depth	f'c = 2,000 p	si (13.8 MPa)	f'c = 3,000 ps	si (20.7 MPa)	f'c = 4,000 ps	si (27.6 MPa)	f'c = 6,000 p	si (41.4 MPa)	
Material	h _v in.	Tension Ibs. (kN)	Shear I <u>bs.</u> (kN)	Tension Ibs. (kN)	Shear Ibs. (kN)	Tension Ibs. (kN)	Shear Ibs. (kw)	Tension Ibs. (RN)	Shear Ibs. (NN)	
	1 (25.4)	125 (0.6)	295 (1.3)	150 (0.7)	295 (1.3)	175 (0.8)	295 (1.3)	175 (0.8)	295 (1.3)	
Type 304 Stainloss	1-1/4 (31.8)	215 (1.0)	315 (1.4)	215 (1.0)	315 (1.4)	255 (1.1)	335 (1.5)	305 (1.4)	335 (1.5)	
Steel		1-1/2 (38.1)	285 (1.3)	335 (1.5)	305 (1.4)	335 (1.5)	330 (1.5)	335 (1.5)	330 (1.5)	335 (1.5)
			1-3/4 (44.5)	360 (1.6)	410 (1.8)	380 (1.7)	410 (1.8)	395 (1.8)	410 (1.8)	395 (1.8)
\mathcal{I}	J Aler						250	\mathcal{L}	ىرى	
Type 410	(22.2) 1-1/4 (31.8)	-	-	(0.25) 115 (0.5)	(0.9) 280 (1.3)	(0.3) 135 (0.6)	(1.1) 320 (1.4)	-	-	
Stainless Steel	1-1/2 (38.1)	-	-	540 (2.4)	605 (2.7)	540 (2.4)	605 (2.7)	-	-	
	1-3/4 (44.5)	-	-	608 (2.7)	605 (2.7)	608 (2.7)	605 (2.7)	-	-	
	Type 304 Stainless Steel	Material h, in. Type 304 1-(25.4) Stainless Steel 1-1/4 (31.8) 1-1/2 (38.1)	Anchor Material Deptn hv in. Tension Ibs. 1 125 (25.4) (kN) Type 304 Stainless Steel 1-1/4 (31.8) 215 (1.0) 1-1/2 (31.8) 285 (38.1) 285 (1.0) 1-3/4 (44.5) 360 (1.6) Type 410 Stainless Steel 1-1/4 (31.8) - Type 410 Stainless Steel 1-1/2 (38.1) - 1-3/4 (44.5) - -	Anchor Material Deptn h _v in. Tension (kN) Shear lbs. Type 304 Stainless Steel 1 (25.4) 125 (0.6) 295 (1.3) 1-1/4 (31.8) 215 (1.0) 315 (1.4) 1-1/2 (38.1) 285 (38.1) 335 (1.5) 1-3/4 (44.5) 360 (1.6) 410 (1.8) Type 410 Stainless Steel 1-1/4 (31.8) - Type 410 Stainless Steel 1-1/2 (38.1) - 1-3/4 (44.5) - -	Anchor Material Deptn hv in. Tension Ibs. Shear Ibs. Tension Ibs. Type 304 Stainless Steel 1 125 (25.4) 295 (0.6) 150 (0.7) 1-1/4 Stainless Steel 1-1/4 (31.8) 215 (1.0) 315 (1.4) 215 (1.6) 1-1/2 (38.1) 285 (38.1) 335 (1.5) 305 (1.4) 1-3/4 (44.5) 360 (1.6) 410 (1.8) 380 (1.7) Type 410 Stainless Steel 1-1/4 (31.8) - - 555 (0.25) 1-1/2 (38.1) - 540 (2.4) - 540 (2.4) 1-3/4 (44.5) - 540 (2.7) -	Anchor Material Deptn hv in. Tension Ibs. Shear Ibs. Tension Ibs. Shear Ibs. Type 304 Stainless Steel 1 (25.4) 125 (0.6) 295 (1.3) 150 (0.7) 295 (1.3) 1-1/4 Stainless Steel 1-1/4 (31.8) 215 (1.0) 315 (1.4) 215 (1.5) 315 (1.4) 315 (1.5) 1-1/2 (38.1) 285 (1.3) 335 (1.5) 305 (1.4) 335 (1.5) 335 (1.4) 1-3/4 (44.5) 360 (1.6) 410 (1.8) 380 (1.7) 410 (1.8) Type 410 Stainless Steel 1-1/4 (31.8)	Anchor Material Deptn hv in. Tension Ibs. Shear Ibs. Tension Ibs. Shear Ibs. Tension Ibs. Shear Ibs. Type 304 Stainless Steel 1 125 295 150 295 175 1-1/4 215 315 215 315 255 1-1/2 285 335 305 335 330 1-1/2 285 335 305 335 330 1-3/4 360 410 380 410 395 (44.5) (1.6) (1.8) (1.7) (1.8) (1.8) Type 410 Stainless Steel 1-1/4 - - 55. 215 . Type 410 1-1/4 21.0 Type 410 Stainless Steel 1-1/4 	Anchor Material Deptn hv (mm) Tension (kN) Tension lbs. Shear lbs. Tension lbs. Shear lbs. Tension lbs. Shear lbs. Shear lbs.	Anchor Material Deptn h, (mm) Tension (kN) Shear lbs. Tension lbs. Tension lbs. Shear lbs. Tension lbs. Shear lts. Tension lbs. Shear lts. Tension lbs. Shear lts. Tension lbs. Shear lts. Tension lts.lts. Shear lts.lts.	

2. Critical and minimum spacing and edge distances as well as reduction factors for intermediate spacing and edge distances are listed in Design Criteria section.

MECHANICAL ANCHORS

TAPPER TM Concrete Screw Anchor

Ultimate and Allowable Load Capacities for Tapper Screw Anchor in Lightweight Concrete^{1,2,3}

Nominal Anchor Diameter d in. (mm)Anchor Anchor MaterialMinimum Embedment Depth h. in. (mm)1/4 (6.4)Type 304 Stainless Steel1-1/2 (38.1)	Minimum			Tension, lbs (kN)				Shear, lbs (kN)		
	Minimum Concrete Compressive Strength (f'c)						Snear, Ibs (KN)			
d	h√	3,000 psi	(20.7 MPa)	4,000 psi	(27.6 MPa)	5,000 psi	(34.5 MPa)	f′c ≥ 3,000 p	si (20.7 MPa)	
		Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	Ultimate Load	Allowable Load	
		270 (1.2)	70 (0.3)	300 (1.4)	75 (0.3)	325 (1.5)	80 (0.4)	520 (2.3)	130 (0.6)	

1. Tabulated load values are for anchors installed in structural sand-lightweight concrete. Concrete compressive strength must be at the specified minimum at the time of installation.

2. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead.

3. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

Allowable Load Capacities for Tapper Screw Anchor in Hollow Block^{1,2,3,4,5}

Nominal Anchor		Minimum	Lightweight Normal W	t, Medium & eight CMU	Minimum End Distance (Typ)
Diameter	Anchor Material	Embedment Depth hv	f′c ≥ 3,000 p:	si (13.8 MPa)	
in. (mm)		in. (mm)	Tension lbs. (kN)	Shear lbs. (kN)	auter (JAb)
	Type 410 Stainless Steel	1 (25.4)	140 (0.6)	210 (0.9)	gga Dist
1/4	Type 304	1-1/4 (31.8)	120 (0.5)	205 (0.9)	
(6.4)	and Type 410	1-1/2 (38.1)	145 (0.7)	245 (1.1)	s i i i i i i i i i i i i i i i i i i i
	Stainless Steel	1-3/4 (44.5)	145 (0.7)	245 (1.1)	

1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm \geq 2,000 psi).

2. Allowable load capacities listed are calculated using an applied safety factor of 5.0.

3. The tabulated values are applicable for screw anchors installed at a critical spacing between screw anchors of 16 times the screw anchor diameter. The screw anchors may be reduced to a minimum spacing distance of 8 times the screw diameter provided the allowable loads are reduced by 70 percent. Linear interpolation for allowable loads may be used for intermediate spacing distances.

4. The tabulated values are applicable for screw anchors installed at a minimum edge distance of 12 times the screw anchor diameter unless otherwise noted.

5. The tabulated values are applicable for installations into the face shell of the masonry member. The face shell thickness must be able to accommodate the specified embedment depth. Masonry cells may be grouted.

Allowable Load Capacities for Tapper Screw Anchor in Brick Masonry^{1,2,3,4,5}

Nomina			Brick N	lasonry	
Anchor Diameter	Anchor Materia	Minimum Embedment Depth hv	f´c ≥ 1,300 p	si (9.0 MPa)	Minimum End Distance (Typ)
d in. (mm)	Anchor Materia	in. (mm)	Tension lbs. (kN)	Shear lbs. (kN)	
	Type 410 Stainless Steel	1 (25.4)	145 (0.6)	288 (1.3)	Distance (j)
1/4	Type 304	1-1/4 (31.8)	160 (0.7)	330 (1.5)	
(6.4)	and Type 410	1-1/2 (38.1)	190 (0.9)	345 (1.6)	
	Stainless Steel	1-3/4 (44.5)	190 (0.9)	345 (1.6)	₩ ₩

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation (f'm \ge 1,300 psi).

2. Allowable load capacities are calculated using an applied safety factor of 5.0.

3. Linear interpolation may be used to determine allowable load capacities for intermediate embedments.

4. The tabulated values are for anchors installed at a minimum edge and end distance of 4 inches.

5. The tabulated values are for anchors installed at a minimum of 12 anchor diameters on center for 100 percent capacity. Spacing distances may be reduced to 6 anchor diameters on center provided the capacities are reduced by 50 percent. Linear interpolation may be used for intermediate spacing distances.

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\frac{\mathbf{N}\mathbf{u}}{\mathbf{N}\mathbf{n}} + \left(\frac{\mathbf{V}\mathbf{u}}{\mathbf{V}\mathbf{n}}\right) \le 1$$

 $N_u = Applied Service Tension Load$ $N_n = Allowable Tension Load$ $V_u = Applied Service Shear Load$ $V_n = Allowable Shear Load$

LOAD ADJUSTMENT FACTORS FOR SPACING AND EDGE DISTANCES IN NORMAL WEIGHT CONCRETE

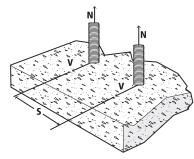
Anchor Installed in Normal-Weight Concrete

Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor
Spacing (s)	Tension and Shear	s _{cr} = 12d	$F_{\text{NS}}=F_{\text{VS}}=1.0$	$s_{min} = 6d$	$F_{\text{NS}}=F_{\text{VS}}=0.50$
Edge Distance (c)	Tension and Shear	c _{cr} = 12d	$F_{NC} = F_{VC} = 1.0$	$c_{min} = 6d$	$F_{\text{NC}}=F_{\text{VC}}=0.50$

Where:

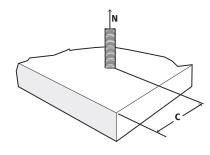
1. Load values, found in the Performance Data Tables, are multiplied by the reduction factors when spacing edge distances are less than critical distances. Linear interpolation is allowed for spacing and edge distances that fall between critical and minimum distances. When a group of anchors is affected by both reduced spacing and edge distance, the spacing and edge distance reduction factors must be combined (multiplied).

Spacing Reduction Factors -Tension (F_{NS}) & Shear (F_{VS})


	Spacing, Tension (F _{NS}) &	Shear (Fvs)		Y
ameter (in) [Scr (in) [Smin (in) [1-1/8] 1-1/2] 2 1 2-1/4] 2-1/4] 2-1/2] 3 1 3-1/2] 4] 4] 4-1/2]	3/16	К	1/4	
eter (in) eter (in) (in) 1-1/8 1-1/2 2 2-1/4 2 2-1/2 3 3-1/2 4	2-1/4	К	3	
in)	1-1/8	Я	1-1/2	
1-1/8	0.50	Я	-	
1-1/2	0.67	Я	0.50	
2	0.89	Я	0.67	
2 - 1/4	1.00	К	0.75	
2 - 1/2	-	К	0.83	
3	-	К	1.00	
S S	-	К	-	
4	-	Т	-	
4-1/2	-	K	-	
	in) in) 1-1/8 1-1/2 2 2-1/4 2-1/2 3 3-1/2 4	2-1/4 in) 1-1/8 1-1/2 0.50 1-1/2 0.67 2 0.89 2-1/4 1.00 2-1/2 - 3 - 3-1/2 - 4 -	in) 2-1/4 in) 1-1/8 1-1/8 0.50 1-1/2 0.67 2 0.89 2-1/4 1.00 2-1/2 - 3 - 3-1/2 - 4 -	in) 2-1/4 3 in) 1-1/8 1-1/2 1-1/8 0.50 - 1-1/2 0.67 0.50 1-1/2 0.67 0.50 2 0.89 0.67 2-1/4 1.00 0.75 2-1/2 - 0.83 3 - 1.00 3-1/2 - - 4 - -

Edge Distance Reduction Factors -Tension (F_{NC}) & Shear (F_{VC})

		Spacing, Tension (F _{NC}) &	Shear (Fw)	\sim	
Diame	eter (in)	3/16	Х	1/4	
Car	(in)	2-1/4	Х	3	
Cmir	(in)	1-1/8	Х	1-1/2	
	1-1/8	0.50	Я	-	
	1-1/2	0.67	Я	0.50	
(iu	2	0.89	Я	0.67	
, с (2-1/4	1.00	Я	0.75	
Edge Distance, c (in.)	2-1/2	-	Я	0.83	
je Dis	3	-	K	1.00	
Edg	3-1/2	-	Я	-	
	4	-	8	-	
	4-1/2	-	K	-	


Notes: For anchors loaded in tension and shear, the critical edge distance $(s_{\rm cr})$ is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance $({\sf s}_{\sf min})$ is equal to 6 anchor diameters (6d) at which the anchor achieves 50% of load.

Notes: For anchors loaded in tension and shear, the critical edge distance (c_{cr}) is equal to 12 anchor diameters (12d) at which the anchor achieves 100% of load.

Minimum edge distance (c_{min}) is equal to 6 anchor diameters (6d) at which the anchor achieves 50% of load.

TECH MANUAL – MECHANICAL ANCHORS ©2015 POWERS VOLUME 1 – 9/2015 – REV.D

ORDERING INFORMATION

Hex head Tapper anchors are measured from below the washer while flat head Tapper anchors are measured end to end. To select the proper minimum anchor length, determine the embedment depth required to obtain the desired load capacity. Then add the thickness of the fixture, including any spacers or shims, to the embedment depth.

Do not select a length that will result in an embedment into the base material which is greater than 1-3/4" to 2". Most concrete screw anchors, cannot be properly driven to a depth of more than 2,", especially in denser base materials.

Type 304 Stainless Steel Tapper, Hex Head & Flat Head

	Catalog Number		Size	Standard	Standard	Wt./100	Drill Bit Reference		[
	HEX	PFH	Size	Box	Carton	WU./100	Straight	SDS HEX	-
_	2880	2887	1/4" x 1-1/4"	100	500	1-1/2	2894	2790	-
	2881	2888	1/4" x 1-3/4"	100	500	1-3/4	2894	2790	_
•	2882	2889	1/4" x 2-1/4"	100	500	2	2895	2790	
	2883	2890	1/4" x 2-3/4"	100	500	2 - 3/4	2895	2790	[
								•	

One drill bit is packaged in each box of Tappers.

Type 410 Stainless Steel Tapper, Hex Head & Flat Head

Catalog Number		Size	Standard	Standard	Wt./100	Drill Bit Reference		
HEX	PFH	5128	Box	Carton	WU./100	SDS HEX		
4180	4185	3/16" x 1-1/4"	100	500	1-1/2	2793		
4181	4186	3/16" x 1-3/4"	100	500	1-3/4	2793		
4182	4187	3/16" x 2-1/4"	100	500	2	2793		
4183	4188	3/16" x 2-3/4"	100	500	2-3/4	2793		
4110	4118	1/4" x 1-3/4"	100	500	2-3/4	2796		
4112	4120	1/4" x 1-3/4"	100	500	2-3/4	2796		
4114	4123	1/4" x 2-1/4"	100	500	2-3/4	2796		
4116	4124	1/4" x 2-3/4"	100	500	2-3/4	2796		
4117	4125	1/4" x 3-1/4"	100	500	2-3/4	2796		
4119	-	1/4" x 3-3/4"	100	500	2 - 3/4	2796		
4127	-	1/4" x 4"	100	500	2 - 3/4	2797		
4128	-	1/4" x 5"	100	500	2-3/4	2797		
4129	-	1/4" x 6"	100	500	2-3/4	2797		
One dri ll bit	One drill bit is packaged in each box of Tappers.							

Tapper Carbide Drill Bits for 410 Stainless Steel (Do not use with Type 304 Stainless Steel)

Hex Shank SDS-Plus

Catalog Number	Nominal Tapper Drill Bit Size	Drill Bit Range	Usable Length	Standard Tube	Wt./10
2793	5/32" x 5"	0.168" - 0.175" -	3"	1	1
2794	5/32" x 7"	0.108 - 0.175	5"	1	1
2796	3/16" x 5"	0.202" - 0.204"	3"	1	1
2797	3/16" x 7"		5"	1	1

Tapper Carbide Drill Bits for Type 304 Stainless Steel

Straight Shank

Catalog Number	Nominal Tapper Drill Bit Size	Drill Bit Range	Usable Length	Standard Tube	Wt./10
2894	3/16" x 3-1/2"	0.215" - 0.216"	2"	10	1/4
2895	3/16" x 4-1/2"	0.215 - 0.216	3"	10	1/4

Hex Shank SDS-Plus

Catalog Number	Nominal Tapper Drill Bit Size	Drill Bit Range	Usable Length	Standard Tube	Wt./10
2790	3/16" x 5"	0.215" - 0.216"	3"	1	1

Installation Tools

Catalog Number	Description	Max Screw Length	Max. Bit Length	Standard Tube	Wt./Each
2791	Tapper 1000 Tool Kit	4"	5 - 1/2"	1	3/4
2792	Condrive [®] 2000	2-3/4"	4-1/2"	1	2/3
2795	1000 SDS Extension (8")	6"	7-1/2"	1	1/2

