Titen HD® Heavy-Duty Screw Anchor

SIMPSON Strong-Tie

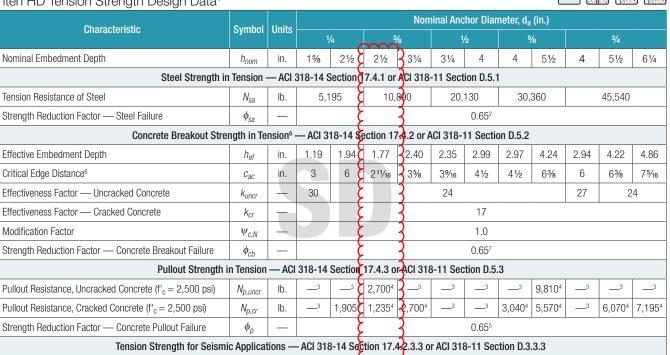
Titen HD Anchor Product Data — Mechanically Galvanized

Size	Model	Thread	Drill Bit	Wrench	Qua	ntity
(in.)	No.	Length (in.)	Diameter (in.)	Size (in.)	Вох	Carton
3% x 3	THD37300HMG	21/2			50	200
3/8 x 4	THD37400HMG	31/2	3/8	9/	50	200
3% X 5	THD37500HMG	4½	98	9/16	50	100
3⁄8 x 6	THD37600HMG	5½			50	100
½ x 4	THD50400HMG	3½			20	80
½ x 5	THD50500HMG	41/2			20	80
½ x 6	THD50600HMG	5½	1/2	3/4	20	80
½ x 6½	THD50612HMG	51/2	/2	74	20	40
½ x 8	THD50800HMG	51/2			20	40
½ x 12	THD501200HMG	5½			5	20
% x 5	THDB62500HMG	41/2			10	40
5⁄8 x 6	THDB62600HMG	5½	5/8	¹⁵ / ₁₆	10	40
5⁄8 x 6 1∕2	THDB62612HMG	5½	78	1916	10	40
5⁄8 x 8	THDB62800HMG	5½			10	20
3⁄4 x 5	THD75500HMG	41/2			5	20
3⁄4 X 6	THDT75600HMG	41/2	3/4	11/	5	20
3/4 X 81/2	THD75812HMG	5½	74	11/8	5	10
3⁄4 x 10	THD75100HMG	51/2			5	10

3/8" Anchor data for CIP and CMU bubbled for convenience.

Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See p. 261 or visit **strongtie.com/info** for more corrosion information.

Titen HD Installation Information and Additional Data¹


Characteristic	Symbol	Units			\sim	Non	ninal And	hor Dian	neter, d _a	(in.)			
Glidiacteristic	Syllibul	UIIIIS		4	3,	%	7	½	5,	%		3/4	
			Installa	tion Inf	rmation		2						
Drill Bit Diameter	d _{bit}	in.	1,	4	3/	⁄8	} 1	⁄2	5	/8		3/4	
Baseplate Clearance Hole Diameter	d_{c}	in.	3,	⁄8	1/	⁄2	5	8	3,	V ₄		7/8	
Maximum Installation Torque	T _{inst,max}	ftlbf	2	4^{2}	50	D^2	6	5 ²	10	00^{2}		150 ²	
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	12	.5 ³	15	iO ³	34	·0 ³	34	10 ³		385³	
Minimum Hole Depth	h _{hole}	in.	13/4	2%	23/4	3½	3¾	41/2	41/2	6	41/2	6	63/4
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	2½	31/4	31/4	4	4	5½	4	5½	61/4
Critical Edge Distance	Cac	in.	3	6	211/16	35/8	3%16	41/2	41/2	6%	6	6%	75/16
Minimum Edge Distance	C _{min}	in.	1	1/2			}		13/4				
Minimum Spacing	S _{min}	in.	1	1/2	-		3				23/4	,	3
Minimum Concrete Thickness	h _{min}	in.	31/4	3½	4	5	5	61/4	6	81/2	6	8¾	10
			Ado	ditional	Data		}						
Anchor Category	Category	_			<u> </u>		{	1					
Yield Strength	f _{ya}	psi	100	,000	2		97,000						
Tensile Strength	f _{uta}	psi	125	,000		3			110,000				
Minimum Tensile and Shear Stress Area	A _{se}	in ²	0.0)42	0.099		0.1	83	0.2	276		0.414	
Axial Stiffness in Service Load Range — Uncracked Concrete	eta_{uncr}	lb./in.	202	,000			{		672,000				
Axial Stiffness in Service Load Range — Cracked Concrete	eta_{cr}	lb./in.	173	,000	{		{		345,000				

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D.
- 2. Tinst, max is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.
- 3. Timpact, max is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.

Titen HD® Design Information — Concrete

Titen HD Tension Strength Design Data¹

1.905

1.2354

♣.700⁴

3,0404 | 5,5704

 0.65^{5}

3.8404

6.0704

7.195

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} must be determined in accordance with ACI 318-11 D.4.4. Anchors are considered brittle steel elements.
- 3. Pullout strength is not reported since concrete breakout controls.

Nominal Pullout Strength for Seismic Loads (f'_c = 2,500 psi)

Strength Reduction Factor — Breakout or Pullout Failure

4. Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by $(f_{c,specified}^{\circ}/2,500)^{0.5}$.

lh.

- 5. The tabulated value of ϕ_p or ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3.(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ must be determined in accordance with ACI 318-11 Section D.4.4(c).
- 6. The modification factor $\Psi_{\text{CD,N}}$ = 1.0 for cracked concrete. Otherwise, the modification factor for uncracked concrete without supplementary reinforcement to control splitting is either:

(1)
$$\psi_{c\rho,N} = 1.0$$
 if $c_{a,min} \ge c_{ac}$ or (2) $\psi_{c\rho,N} = \frac{c_{a,min}}{c_{ac}} \ge \frac{1.5h_{ef}}{c_{ac}}$ if $c_{a,min} < c_{ac}$

The modification factor, $\psi_{cp,N}$ is applied to the nominal concrete breakout strength, N_{cb} or N_{cbg} .

7. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).

Titen HD® Design Information — Concrete

Titen HD Shear Strength Design Data¹

Characteristic	Symbol	Unit			Nominal Anchor Diameter, d _a (in.)								
Gildideteristic	Syllibol	UIIIL	1,	1/4 (************************************		, B	1,	/2	5/8			3/4	
Nominal Embedment Depth			31/4	4	4	5½	4	5½	61/4				
Steel Strength in Shear													
Shear Resistance of Steel	V _{sa}	lb.	2,0)20	4,4	0	7,4	155	10,	000	14,950	16,	840
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_				(0.60^{2}					
		Concre	te Break	out Stre	ngth in Sh	ear							
Outside Diameter	da	in.	0.2	25	0.3	3 5	0.5	500	0.6	625	0.750		
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	2.94	4.22	4.86
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_				{		0.70^{3}					
		Concr	ete Pryoı	ut Strer	gth in She	ar							
Coefficient for Pryout Strength	k _{cp}	lb.		3	1.0	2.0							
Strength Reduction Factor — Concrete Pryout Failure	ϕ_{cp}	_		}		0.704							
	Steel	Strengt	th in She	ar for S	eismic App	ication	s						
Shear Resistance for Seismic Loads	V _{eq}	lb.	1,6	95	2,8	2,8 2 5 4,790 8,000 9,350			9,350				
Strength Reduction Factor — Steel Failure	ϕ_{eq}	_				0.60 ²							

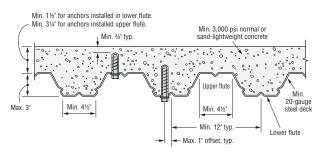
- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- 2. The tabulated value of ϕ_{sa} and ϕ_{eq} applies when the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{sa} and ϕ_{eq} must be determined in accordance with ACI 318 D.4.4.
- 3. The tabulated value of ϕ_{cb} applies when both the load combinations of Section 1605.2.1 of the IBC, ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. Condition B applies where supplementary reinforcement is not provided. For installations where complying supplementary reinforcement can be verified, the ϕ_{cb} factors described in ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition A are allowed. If the load combinations of ACI 318-11 Appendix C are used, the appropriate value of ϕ_{cb} must be determined in accordance with ACI 318-11 D.4.4(c).
- 4. The tabulated value of ϕ_{CD} applies when both the load combinations of IBC Section 1605.2, ACI 318-14 5.3 or ACI 318-11 Section 9.2 are used and the requirements of ACI 318-14 17.3.3(c) or ACI 318-11 D.4.3(c) for Condition B are met. If the load combinations of ACI 318-11 Appendix C are used, appropriate value of ϕ_{CD} must be determined in accordance with ACI 318-11 Section D.4.4(c).

Titen HD Tension and Shear Strength Design Data for the Soffit of Normal-Weight or Sand-Lightweight Concrete over Steel Deck^{1,6,7}

						Nomina	l Anchor	Diameter	r, d _a (in.)			
Characteristic	Cumbol	Units	Lower Flute						Upper Flute			
GlididGtellStiC	Symbol	UIIILS	Figu	ıre 2		Figu	ire 1		Figu	ıre 2	Figu	ire 1
				1/4		3/8		⁄2	1	/4	3/8	1/2
Nominal Embedment Depth	h _{nom}	in.	1%	2½	1 1/8	2½	2	3½	15/8	2½	1 1/8	2
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.23	1.77	1.29	2.56	1.19	1.94	1.23	1.29
Pullout Resistance, concrete on steel deck (cracked) ^{2,3,4}	N _{p,deck,cr}	lb.	420	535	375	870	905	2,040	655	1,195	500	1,700
Pullout Resistance, concrete on steel deck (uncracked) ^{2,3,4}	N _{p,deck,uncr}	lb.	995	1,275	825	1,905	1,295	2,910	1,555	2,850	1,095	2,430
Steel Strength in Shear, concrete on steel deck5	V _{sa, deck}	lb.	1,335	1,745	2,240	2,395	2,435	4,430	2,010	2,420	4,180	7,145
Steel Strength in Shear, Seismic	V _{sa, deck,eq}	lb.	870	1,135	1,434	1,533	1,565	2,846	1,305	1,575	2,676	4,591

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 and ACI 318-11 Appendix D, except as modified below.
- Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by (f'_{c,specified} /3,000)^{0.5}.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies, as shown in Figure 1 and Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318-14 Section 17.4.3.2 or ACI 318-11 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies $N_{p,deck,cr}$ shall be substituted for $N_{p,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$.
- 5. In accordance with ACI 318-14 Section 17.5.1.2(C) or ACI 318-11 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over steel deck floor and roof assemblies V_{sa,deck} and V_{sa,deck,eq} shall be substituted for V_{sa}.
- 6. Minimum edge distance to edge of panel is 2hef.
- 7. The minimum anchor spacing along the flute must be the greater of $3h_{\rm eff}$ or 1.5 times the flute width.

Titen HD® Design Information — Concrete



Titen HD Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Steel Deck

IBC	1	→	
-----	---	----------	--

			Nominal Anchor Diameter, d _a (in.)				
Design Information	Symbol	Units	Figure 3	Figure 3			
			1/4	3 %			
Nominal Embedment Depth	h _{nom}	in.	1 %	2½			
Effective Embedment Depth	h _{ef}	in.	1.19	1.77			
Minimum Concrete Thickness	h _{min,deck}	in.	2½	31⁄4			
Critical Edge Distance	C _{ac,deck,top}	in.	3¾	71/4			
Minimum Edge Distance	C _{min,deck,top}	in.	3½	3			
Minimum Spacing	S _{min,deck,top}	in.	3½	3			

- 1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figures 2 and 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , respectively, must be calculated in accordance with ACI 318-14 Section 17.5.2 or ACI 318-11 Section D.6.2, using the actual member thickness, $h_{min,deck}$, in the determination of A_{vc} .
- 2. Design capacity shall be based on calculations according to values in the tables featured on p. 84.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is 11/2" (see Figures 2 and 3).
- 4. Steel deck thickness shall be minimum 20 gauge.
- 5. Minimum concrete thickness ($h_{min,deck}$) refers to concrete thickness above upper flute (see Figures 2 and 3).

Sand-light weight concrete or normal-weight concrete over steel deck (minimum) 300 ps)

Min. 3½'

Min. 1½'

Figure 1. Installation of %"- and ½"-Diameter Anchors in the Soffit of Concrete over Steel Deck

Figure 2. Installation of 1/4"-Diameter Anchors in the Soffit of Concrete over Steel Deck

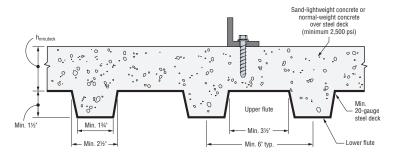


Figure 3. Installation of 1/4"- and %"-Diameter Anchors in the Topside of Concrete over Steel Deck

Titen HD Allowable Tension and Shear Loads in

8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

0:		D 111 D11	Minimum	Critical Edge	Minimum Edge Critical Crosine Values for 8" Lightweight, Medium-Weight or Normal-Weight Grout-Filled CMU				yht			
Siz in (mr		Drill Bit Diameter in.	Embedment Depth in.	Distance C _{crit}	Distance C _{min}	Spacing Distance Tension in.		n Load	Shear	Load		
(1111)	11)		(mm)	in. (mm)	in. (mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)		
	Anchor Installed in the Face of the CMU Wall (See Figure 4)											
1/4 (6.4		1/4	2½ (64)	4 (102)	1 ½ (32)	4 (102)	2,050 (9.1)	410 (1.8)	2,500 (11.1)	500 (2.2)		
3 /8 (9.5		3/8	2¾ (70)	12 (305)	4 (102)	6 (152)	2,390 (10.6)	480 (2.1)	4,340 (19.3)	870 (3.9)		
1/2 (12.	2	1/2	3½ (89)	12 (305)	4 (102)	8 (203)	3,440 (15.3)	690 (3.1)	6,920 (30.8)	1,385 (6.2)		
5/8 (15.	-	5/8	4½ (114)	12 (305)	4 (102)	10 (254)	5,300 (23.6)	1,060 (4.7)	10,420 (46.4)	2,085 (9.3)		
3 <u>/4</u> (19.		3/4	5½ (140)	12 (305)	4 (102)	12 (305)	7,990 (35.5)	1,600 (7.1)	15,000 (66.7)	3,000 (13.3)		

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, $f'_{\it m}$, at 28 days is 1,500 psi.
- 5. Embedment depth is measured from the outside face of the concrete masonry unit.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 7. Refer to allowable load-adjustment factors for spacing and edge distance on pp. 90–91.

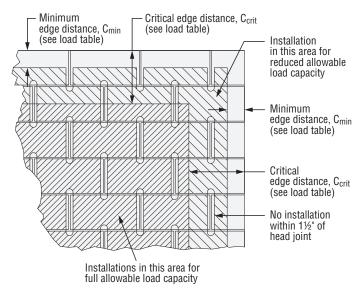
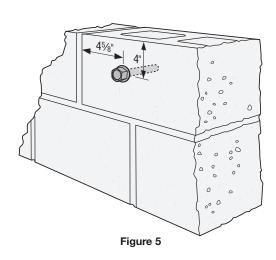


Figure 4. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

Mechanical Anchors

C-A-2021 @2021 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Masonry



Titen HD Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

IDC	1	→	
IBC	200 200	200 200	

	a :	2 11 21	Embedment	Minimum Edge		8" Hollow CMI on CMU	J Loads Based Strength				
	Size in. (mm)	Drill Bit Diameter in.	Depth⁴ in.	in.	in.	Depth⁴	Edge Distance in.	Tensio	n Load	Shear	Load
	(11111)		(mm) (mm)		Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)			
	~~~~	~~~~	And	hor Installed in Fa	ce Shell (See Figur	re 5)	$\sim$	·····			
ر	<b>3/8</b> (9.5)	3/8	<b>13/4</b> (45)	<b>4</b> (102)	<b>720</b> (3.2)	<b>145</b> (0.6)	<b>1,240</b> (5.5)	<b>250</b> (1.1)			
	1/2 (12.7)	1/2	134 (45)	(102)	<b>760</b> (3.4)	150 (0.7)	<b>1,240</b> (5.5)	<b>250</b> (1.1)			
	<b>5%</b> (15.9)	5%	<b>13/4</b> (45)	<b>4</b> (102)	<b>800</b> (3.6)	<b>160</b> (0.7)	<b>1,240</b> (5.5)	<b>250</b> (1.1)			
	<b>3/4</b> (19.1)	3/4	<b>13/4</b> (45)	<b>4</b> (102)	<b>880</b> (3.9)	<b>175</b> (0.8)	<b>1,240</b> (5.5)	<b>250</b> (1.1)			

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. Note: No installation within 45%" of bed joint of hollow masonry block wall.
- 2. Values for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'_m, at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional ½"- through 1½"-thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces.
  CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.
- 7. Set drill to rotation-only mode when drilling into hollow CMU.
- 8. The tabulated allowable loads are based on one anchor installed in a single cell.
- 9. Distance from centerline of anchor to head joint shall be a minimum of 4%".





Titen HD® Allowable Tension and Shear Loads in

8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall



		Embed.	Minimum	Minimum End Distance						Critical	8" Gro	ut-Filled CMU Al	lowable Loads E	Based on CMU St	trength, $f'_m = 1$ ,	500 psi
Size in.	Drill Bit Diameter	Depth	Edge Distance		Spacing Distance	Ten	sion	Shear Perpend	dicular to Edge	Shear Para	llel to Edge					
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)					
	Anchor Installed in Cell Opening or Web (Top of Wall) (See Figure 6)															
<b>½</b> (12.7)	1/2	<b>4½</b> (114)	<b>13/4</b> (45)	<b>8</b> (203)	<b>8</b> (203)	<b>2,860</b> (12.7)	<b>570</b> (2.5)	<b>800</b> (3.6)	<b>160</b> (0.7)	<b>2,920</b> (13.0)	<b>585</b> (2.6)					
5/8 (15.9)	5/8	<b>4½</b> (114)	<b>13/4</b> (45)	<b>10</b> (254)	<b>10</b> (254)	<b>2,860</b> (12.7)	<b>570</b> (2.5)	<b>800</b> (3.6)	<b>160</b> (0.7)	<b>3,380</b> (15.0)	<b>675</b> (3.0)					

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8"-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, f'm, at 28 days is 1,500 psi.
- 5. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 6. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

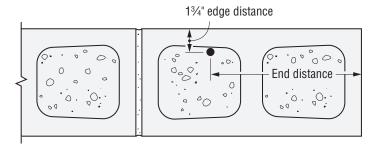



Figure 6.
Anchor Installed in Top of Wall at 13/4" Edge Distance

Titen HD® Allowable Tension and Shear Loads in 8" Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall



		Embed.	Minimum	Minimum	Critical									
Size in.	Drill Bit Diameter	Depth	Edge Distance	End Distance	Spacing Distance			Shear Perpendicular to Edge		Shear Para	llel to Edge			
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)			
	,		,	Anch	or Installed	in Cell Opening	(Top of Wall) (Se	e Figure 7)						
<b>½</b> (12.7)	1/2	41/2	3	12	12	5,800	1,160	2,750	550	7,500	1,500			
<b>5%</b> (15.9)	5/8	(114)	. /-	-	(305)	(305)	(25.8)	(5.2)	(12.2)	(2.5)	(33.4)	(6.7)		

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8"-wide, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry,  $\mathbf{f}'_{\textit{m}}$ , at 28 days is 2,000 psi.
- 5. Allowable loads are not permitted to be increased for short-term loading due to wind or seismic forces.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- $7. \, \text{Loads are based on anchor installed in grout-filled cell opening in the top of wall.} \\$

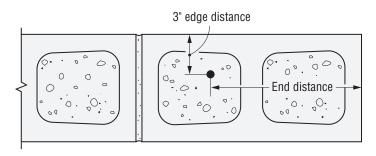
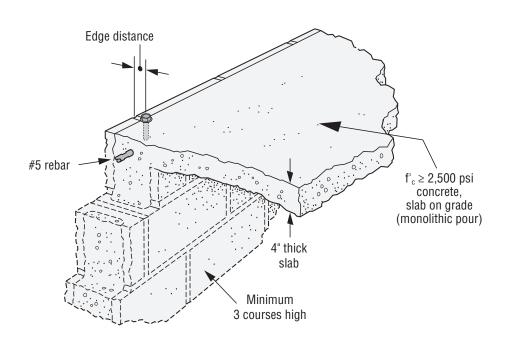



Figure 7.
Anchor Installed in Top of Wall at 3" Edge Distance




Titen HD Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete

_	_	_
	14	
IDA		
IIBL		1
	330	240

Size in.	Drill Bit Diameter	Minimum Embedment	Minimum Edge Distance	Critical Spacing	8" Concrete-Filled CMU Chair Block Allowable Tension Loads Based on CMU Strength				
(mm)	(in.)	Depth in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)			
	3/8	<b>2</b> % (60)	<b>13/4</b> (44)	<b>9½</b> (241)	<b>3,175</b> (14.1)	<b>635</b> (2.8)			
<b>3/8</b> (9.5)		<b>3</b> % (86)	<b>13/4</b> (44)	<b>13½</b> (343)	<b>5,175</b> (23.0)	<b>1,035</b> (4.6)			
		<b>5</b> (127)	<b>21/4</b> (57)	<b>20</b> (508)	<b>10,584</b> (47.1)	<b>2,115</b> (9.4)			
1/2	1/	<b>8</b> (203)	<b>21/4</b> (57)	<b>32</b> (813)	<b>13,722</b> (61.0)	<b>2,754</b> (12.2)			
(12.7)	1/2	<b>10</b> (254)	<b>21/4</b> (57)	<b>40</b> (1016)	<b>16,630</b> (74.0)	<b>3,325</b> (14.8)			
<b>5/8</b> (15.9)	5/8	<b>5½</b> (140)	<b>13/4</b> (44)	<b>22</b> (559)	<b>9,025</b> (40.1)	<b>1,805</b> (8.1)			

^{1.} The tabulated allowable loads are based on a safety factor of 5.0.



^{2.} Values are for 8"-wide concrete masonry units (CMU) filled with concrete, with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.

^{3.} Center #5 rebar in CMU cell and concrete slab as shown in the illustration below.



IBC 🔁 🗯 🎵*

Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

#### How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor ( $f_c$  or  $f_s$ ) is the intersection of the row and column.
- Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edae	Distance	Tension	$(f_{c})$
_990	Diotarioo	101101011	1.(:/

Eago Biotaireo Terrerer (10)			$\sim$								
	Dia.	1/4	۲	3/8	2	1/2	5/8	3/4			
	E	21/2	۶	2¾	3	31/2	41/2	5½			
c _{act} (in.)	C _{cr}	4	۲	12	2	12	12	12			
()	C _{min}	1.25	۶	4	3	4	4	4			
	f _{cmin}	0.77	۲	1.00	2	1.00	0.83	0.66			
1.25		0.77	۶		3						
2		0.83	ζ		2						
3		0.92	۶		3						
4		1.00	ζ	1.00	2	1.00	0.83	0.66			
6		1.00	۶	1.00	3	1.00	0.87	0.75			
8		1.00	ζ	1.00	2	1.00	0.92	0.83			
10		1.00	۶	1.00	3	1.00	0.96	0.92			
12		1.00	ζ	1.00	2	1.00	1.00	1.00			

See footnotes below.

#### Edge Distance Shear (f_c)

Shear Loa	ad Parallel 1	to Edge d	or	End	`			
	Dia.	1/4	ک	3/8	3	1/2	5/8	3/4
	E	21/2	۶	23/4	2	31/2	41/2	51/2
C _{act} (in.)	C _{cr}	4	ح	12	3	12	12	12
(111.)	C _{min}	1.25	۶	4	ζ	4	4	4
	f _{cmin}	0.58	ک	0.77	3	0.48	0.46	0.44
1.25		0.58	۶		ζ			
2		0.69	۲		3			
3		0.85	۶		ζ			
4		1.00	ح	0.77	3	0.48	0.46	0.44
6		1.00	۶	0.83	3	0.61	0.60	0.58
8		1.00	۲	0.89	3	0.74	0.73	0.72
10		1.00	ζ	0.94	ζ	0.87	0.87	0.86
12		1.00	٧	1.00	ス	1.00	1.00	1.00

See footnotes below.

#### Edge Distance Shear (f_c)

Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

(Directed it	r	$\sim$	١					
	Dia.	1/4	ζ	3/8	2	1/2	5/8	3/4
	E	21/2	۶	23/4	3	31/2	4 1/2	5 1/2
c _{act} (in.)	C _{Cr}	4	ζ	12	2	12	12	12
()	C _{min}	1.25	۶	4	ጘ	4	4	4
	f _{cmin}	0.71	ζ	0.58	2	0.38	0.30	0.21
1.25		0.71	۶		3			
2		0.79	ζ		2			
3		0.89	۶		3			
4		1.00	ζ	0.58	2	0.38	0.30	0.21
6		1.00	۶	0.69	3	0.54	0.48	0.41
8		1.00	ζ	0.79	2	0.69	0.65	0.61
10		1.00	۶	0.90	3	0.85	0.83	0.80
12		1.00	ζ	1.00	$^{?}$	1.00	1.00	1.00

- 1. E = embedment depth (inches).
- 2. cact = actual end or edge distance at which anchor is installed (inches).
- 3.  $c_{cr}$  = critical end or edge distance for 100% load (inches).
- 4.  $c_{min}$  = minimum end or edge distance for reduced load (inches).
- $5.f_{\rm C}$  = adjustment factor for allowable load at actual end or edge distance.
- $6.\,f_{CCT}$  = adjustment factor for allowable load at critical end or edge distance.  $f_{CCT}$  is always = 1.00.
- $7.\,f_{Cmin}=$  adjustment factor for allowable load at minimum end or edge distance.
- 8.  $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

#### **Titen HD**[®] Design Information — Masonry



Load-Adjustment Factors for Titen HD Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads (cont.)

#### How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance ( $c_{act}$ ) or spacing (sact) at which the anchor is to be installed.
- 5. The load adjustment factor ( $f_c$  or  $f_s$ ) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Eage Distance Shear (T _c )
Shear Load Perpendicular to Edge or End
(Diversity of Access Course Calaca and Course)

Shear Loa (Directed A			Edge or End End)	d	IBC →	
	Dia.	1/4	3/8	1/2	5/8	3/4
	E	21/2	2¾	31/2	4 1/2	5 1/2
c _{act} (in.)	C _{Cr}	4	12	12	12	12
(111.)	C _{min}	1.25	4	4	4	4
	f _{cmin}	0.71	0.89	0.79	0.58	0.38
1.25		0.71		(		
2		0.79		}		
3		0.89		7		
4		1.00	0.89	0.79	0.58	0.38
6		1.00	0.92	0.84	0.69	0.54
8		1.00	0.95	0.90	0.79	0.69
10		1.00	0.97	0.95	0.90	0.85
10		1.00	1.00	1.00	1.00	1.00

## Spacing Tension (f_s)

	Dia.	1/4	۲	3/8	K	1/2	5/8	3/4
_	E	21/2	ζ	2¾	b	3 1/2	4 1/2	5 1/2
s _{act} (in.)	S _{Cr}	4	۲	6	K	8	10	12
(111.)	Smin	2	ζ	3	b	4	5	6
	f _{smin}	0.66	۶	0.87	R	0.69	0.59	0.50
2		0.66	ζ		B			
3		0.83	۶	0.87	R			
4		1.00	ζ	0.91	B	0.69		
5			۶	0.96	R	0.77	0.59	
6			ζ	1.00	В	0.85	0.67	0.50
8			۶		R	1.00	0.84	0.67
10			ζ		B		1.00	0.83
12			۶		R			1.00

Spacing Shear (t _s )				$\sim$	`				
	Dia.	1/4	ک	3/8	Ź	1/2	5/8	3/4	
_	E	21/2	۶	2¾	₹	31/2	4 1/2	5 1/2	
s _{act} (in.)	S _{Cr}	4	۲	6	2	8	10	12	
()	S _{min}	2	۶	3	₹	4	5	6	
	f _{smin}	0.87	ځ	0.62	2	0.62	0.62	0.62	
2		0.87	۶		₹				
3		0.93	ζ	0.62	2				
4		1.00	۶	0.75	₹	0.62			
5			ζ	0.87	2	0.72	0.62		
6			۶	1.00	ζ	0.81	0.70	0.62	
8			ζ		2	1.00	0.85	0.75	
10			۶	-	3		1.00	0.87	
12			ζ		2			1.00	
			T		•				

^{1.} E = embedment depth (inches).

IRC 🔁 🚝 🛅

 $^{2.} s_{act} = actual spacing distance at which anchors are installed (inches).$ 

^{3.}  $s_{cr}$  = critical spacing distance for 100% load (inches).

^{4.}  $s_{min}$  = minimum spacing distance for reduced load (inches).

 $^{5.} f_s = adjustment factor for allowable load at actual spacing distance.$ 

^{6.}  $f_{SCr}$  = adjustment factor for allowable load at critical spacing distance.  $f_{SCr}$  is always = 1.00.

^{7.} f_{smin} = adjustment factor for allowable load at minimum spacing distance.

^{8.}  $f_s = f_{smin} + [(1 - f_{smin}) (s_{act} - s_{min}) / (s_{cr} - s_{min})].$